skip to main content


Search for: All records

Creators/Authors contains: "Zhou, Xiaohong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Detailed hemodynamic analysis of blood flow in pathological segments close to aneurysm and stenosis has provided physicians with invaluable information about the local flow patterns leading to vascular disease. However, these diseases have both local and global effects on the circulation of the blood within the cerebral tree. The aim of this paper is to demonstrate the importance of extending subject‐specific hemodynamic simulations to the entire cerebral arterial tree with hundreds of bifurcations and vessels, as well as evaluate hemodynamic risk factors and waveform shape characteristics throughout the cerebral arterial trees. Angioarchitecture and in vivo blood flow measurement were acquired from healthy subjects and in cases with symptomatic intracranial aneurysm and stenosis. A global map of cerebral arterial blood flow distribution revealed regions of low to high hemodynamic risk that may significantly contribute to the development of intracranial aneurysms or atherosclerosis. Comparison of pre‐intervention and post‐intervention of pathological cases further shows large angular phase shift (~33.8°), and an augmentation of the peak‐diastolic velocity. Hemodynamic indexes of waveform analysis revealed on average a 16.35% reduction in the pulsatility index after treatment from lesion site to downstream distal vessels. The lesion regions not only affect blood flow streamlines of the proximal sites but also generate pulse wave shift and disturbed flow in downstream vessels. Thisnetwork effectnecessitates the use of large‐scale simulation to visualize both local and global effects of pathological lesions.

     
    more » « less
  2. Purpose

    An image filter designed for reconstructing cerebrovascular trees from MR images is described. Current imaging techniques capture major cerebral vessels reliably, but often fail to detect small vessels, whose contrast is suppressed due to limited resolution, slow blood flow rate, and distortions around bifurcations or nonvascular structures. An incomplete view of angioarchitecture limits the information available to physicians.

    Methods

    A novel Hessian‐based filter for contrast‐enhancement in MR angiography and venography for blood vessel reconstruction without introducing dangling segments is presented. We quantify filter performance with receiver‐operating‐characteristic and dice‐similarity‐coefficient analysis. Total extracted vascular length, number‐of‐segments, volume, surface‐to‐distance, and positional error are calculated for validation.

    Results

    Reconstruction of cerebrovascular trees from MR images of six volunteers show that the new filter renders more complete representations of subject‐specific cerebrovascular networks. Validation with phantom models shows the filter correctly detects blood vessels across all length scales without failing at bifurcations or distorting diameters.

    Conclusion

    The novel filter can potentially improve the diagnosis of cerebrovascular diseases by delivering metrics and anatomy of the vasculature. It also facilitates the automated analysis of large datasets by computing biometrics free of operator subjectivity. The high quality reconstruction enables computational mesh generation for subject‐specific hemodynamic simulations. Magn Reson Med 77:398–410, 2017. © 2016 Wiley Periodicals, Inc.

     
    more » « less
  3. A fully integrated graphene field‐effect transistor (GFET) nanosensor utilizing a novel high‐κ solid‐gating geometry for a practical biosensor with enhanced sensitivity is presented. Herein, an “in plane” gate supplying electrical field through a 30 nm HfO2dielectric layer is employed to eliminate the cumbrous external wire electrode in conventional liquid‐gate GFET nanosensors that undesirably limits the device potential in on‐site sensing applications. In addition to the advantage in the device integration degree, the transconductance level is found to be increased by about 50% over liquid‐gate GFET devices in aqueous‐media, thereby improves the sensitivity performance in sensor applications. As the first demonstration of biosensing applications, a small‐molecule antibiotic, kanamycin A, is detected by means of an aptameric competitive affinity principle. It is experimentally shown that the label‐free and specific quantification of kanamycin A with a concentration resolution at 11.5 × 10−9mis achievable through a single direct observation of the 200 s fast bioassay without any further noise canceling. These results demonstrate the utility and practicability of the new devices in label‐free biosensing as a novel analytical tool, and potentially hold great promise in other significant biomedical applications.

     
    more » « less